TCX2101 | Calculus Cheatsheet (Ch 1.1 - 3.4) - WIP

Complete formula reference for NUS TCX2101 Calculus & Linear Algebra: Functions, Limits, Continuity, Differentiation, and Extreme Values

📚 Complete reference for Class Test 1 and beyond

Test Scope: Ch 1.1 → 3.4 (Functions, Limits, Continuity, Differentiation, Extreme Values)

Format: Closed book — memorize this, don’t bring it!


Chapter 1: Functions

1.1 Domain & Range

Domain Rules

Function TypeDomain RestrictionExample
PolynomialAll real numbers$f(x) = x^3 - 2x + 1$ → $\mathbb{R}$
RationalDenominator ≠ 0$f(x) = \frac{1}{x-2}$ → $x \neq 2$
Square rootInside ≥ 0$f(x) = \sqrt{x-3}$ → $x \geq 3$
√ in denominatorInside > 0 (strict!)$f(x) = \frac{1}{\sqrt{x-3}}$ → $x > 3$
LogarithmInside > 0$f(x) = \ln(x-1)$ → $x > 1$

Multiple Restrictions

Example: $f(x) = \frac{\sqrt{x-3}}{x^2-4}$

  1. Square root: $x - 3 \geq 0$ → $x \geq 3$
  2. Denominator: $x^2 - 4 \neq 0$ → $x \neq \pm 2$
  3. Combine: $x \geq 3$ (already excludes ±2)

Domain: $[3, \infty)$

Tricky Case: Multiple Regions

Example: $f(x) = \sqrt{x^2 - 9}$

Need: $x^2 - 9 \geq 0$ → $x^2 \geq 9$ → $|x| \geq 3$

Domain: $(-\infty, -3] \cup [3, \infty)$ — TWO regions!


1.2 Transformations

The Golden Rule

$$\text{Inside } f() = \text{Horizontal (opposite)} \quad | \quad \text{Outside } f() = \text{Vertical (same)}$$

Transformation Table

TransformationFormulaEffect
Vertical shift up$f(x) + k$Move up by $k$
Vertical shift down$f(x) - k$Move down by $k$
Horizontal shift right$f(x - h)$Move right by $h$ (opposite!)
Horizontal shift left$f(x + h)$Move left by $h$ (opposite!)
Vertical stretch$a \cdot f(x)$, $a > 1$Stretch vertically
Vertical compress$a \cdot f(x)$, $0 < a < 1$Compress vertically
Horizontal compress$f(bx)$, $b > 1$Compress horizontally (opposite!)
Horizontal stretch$f(bx)$, $0 < b < 1$Stretch horizontally (opposite!)
Reflect over x-axis$-f(x)$Flip vertically
Reflect over y-axis$f(-x)$Flip horizontally

Example

$g(x) = 2f(x-3) + 1$

Reading order (inside out):

  1. $x - 3$: shift RIGHT 3 (horizontal, opposite)
  2. $2f(…)$: stretch vertically by 2
  3. $… + 1$: shift UP 1

1.3 Function Types

Classification

TypeDefinitionExamples
Polynomial$a_nx^n + a_{n-1}x^{n-1} + … + a_0$$x^3 - 2x + 1$
Rational$\frac{P(x)}{Q(x)}$ where P, Q are polynomials$\frac{x^2+1}{x-1}$
AlgebraicBuilt from polynomials + roots$\sqrt{x^2 + 1}$
TranscendentalNOT algebraic (trig, exp, log)$\sin x$, $e^x$, $\ln x$

Rule: Any transcendental part → whole function is transcendental

Example: $f(x) = x^2 + \sin x$ → Transcendental (has $\sin x$)


1.4 Special Functions

Inverse Functions

$$f^{-1}(f(x)) = x \quad \text{and} \quad f(f^{-1}(x)) = x$$

FunctionInverseDomain of Inverse
$e^x$$\ln x$$x > 0$
$\ln x$$e^x$$\mathbb{R}$
$\sin x$$\arcsin x$$[-1, 1]$
$\cos x$$\arccos x$$[-1, 1]$
$\tan x$$\arctan x$$\mathbb{R}$

⚠️ Ch1 Common Mistakes

MistakeWrongCorrect
√ in denominator$x \geq 3$$x > 3$ (strict inequality!)
Horizontal shift direction$f(x-3)$ shifts left$f(x-3)$ shifts RIGHT (opposite!)
$\sqrt{x^2-9}$ domain$x \geq 3$ only$x \leq -3$ OR $x \geq 3$ (two regions!)
Numerator = 0Not allowed$\frac{0}{5} = 0$ is fine!

Chapter 2: Limits & Continuity

2.1 Limit Laws

Basic Laws

If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, then:

LawFormulaCondition
Sum$\lim[f + g] = L + M$
Difference$\lim[f - g] = L - M$
Product$\lim[f \cdot g] = L \cdot M$Both limits must be finite
Quotient$\lim\frac{f}{g} = \frac{L}{M}$$M \neq 0$
Power$\lim[f^n] = L^n$
Constant$\lim[c \cdot f] = c \cdot L$

Division Patterns

FormResultIntuition
$\frac{5}{0}$$\pm\infty$ (blows up 🚀)Dividing by tiny number → huge
$\frac{0}{5}$$0$Zero divided by anything = 0
$\frac{0}{0}$Indeterminate (不定式 🤔)Could be anything — must simplify!
$\frac{\infty}{\infty}$IndeterminateMust simplify
$0 \cdot \infty$IndeterminateMust rewrite

2.2 Indeterminate Forms

The 7 Indeterminate Forms

$$\frac{0}{0}, \quad \frac{\infty}{\infty}, \quad 0 \cdot \infty, \quad \infty - \infty, \quad 0^0, \quad 1^\infty, \quad \infty^0$$

Solving $\frac{0}{0}$

Method 1: Factor and Cancel

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x-2)(x+2)}{x-2} = \lim_{x \to 2} (x+2) = 4$$

Method 2: Conjugate (for radicals)

$$\lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x} = \lim_{x \to 0} \frac{(\sqrt{x+4} - 2)(\sqrt{x+4} + 2)}{x(\sqrt{x+4} + 2)} = \lim_{x \to 0} \frac{x+4-4}{x(\sqrt{x+4} + 2)} = \frac{1}{4}$$


2.3 Limits at Infinity

Degree Rules for Rational Functions

$$\lim_{x \to \infty} \frac{a_nx^n + …}{b_mx^m + …}$$

ConditionResultMemory Trick
$n < m$ (top smaller)$0$Top “loses”
$n = m$ (same degree)$\frac{a_n}{b_m}$Leading coefficients
$n > m$ (top bigger)$\pm\infty$Top “wins”

Example

$$\lim_{x \to \infty} \frac{3x^2 + 1}{x^2 - 5} = \frac{3}{1} = 3 \quad \text{(same degree)}$$

$$\lim_{x \to \infty} \frac{2x + 1}{x^3 - 1} = 0 \quad \text{(top smaller)}$$

Special Trig Limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$


2.4 Continuity

3-Part Test for Continuity at $x = a$

A function is continuous at $x = a$ if:

  1. $f(a)$ exists (defined at the point)
  2. $\lim_{x \to a} f(x)$ exists (limit exists)
  3. $\lim_{x \to a} f(x) = f(a)$ (they match)

4 Types of Discontinuity

TypeConditionVisual
Removable (Hole)$\lim_{x \to a^-} f = \lim_{x \to a^+} f \neq f(a)$Single point missing
Jump$\lim_{x \to a^-} f \neq \lim_{x \to a^+} f$Left ≠ Right
Infinite$\lim_{x \to a} f = \pm\infty$Vertical asymptote
OscillatoryLimit doesn’t exist (oscillates)e.g., $\sin(1/x)$ at 0

Hole Detection

  1. WHERE: Check ORIGINAL function for where denominator = 0
  2. WHAT VALUE: Simplify, then substitute to find the y-coordinate of hole

2.5 Intermediate Value Theorem (IVT)

Statement

If $f$ is continuous on $[a, b]$ and $N$ is between $f(a)$ and $f(b)$, then there exists $c \in (a, b)$ such that $f(c) = N$.

Root Finding Application

If $f$ is continuous on $[a, b]$ with $f(a) < 0$ and $f(b) > 0$ (or vice versa), then there exists a root in $(a, b)$.

Intuition: “Can’t teleport through floors” — continuous function must cross zero.

Example

Show $f(x) = x^3 - x - 1$ has a root in $[1, 2]$.

  • $f(1) = 1 - 1 - 1 = -1 < 0$
  • $f(2) = 8 - 2 - 1 = 5 > 0$
  • $f$ is polynomial (continuous everywhere)
  • By IVT, there exists $c \in (1, 2)$ where $f(c) = 0$ ✓

⚠️ Ch2 Common Mistakes

MistakeWrongCorrect
$5/0$“undefined” or “0”$\pm\infty$ (blows up!)
$0/0$“0”Indeterminate — must simplify!
Product law with $\infty$$0 \cdot \infty = 0$Indeterminate — can’t use product law!
Hole vs JumpBoth “don’t match”Hole: L=R≠f(a), Jump: L≠R
Divide by highest powerAlways do itOnly for $x \to \infty$, not $x \to a$

Chapter 3: Differentiation

3.1 Derivative Definition

$$f’(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Interpretation

  • Geometric: Slope of tangent line at $(x, f(x))$
  • Physical: Instantaneous rate of change

Tangent Line Equation

At point $(a, f(a))$:

$$y - f(a) = f’(a)(x - a)$$


3.2 Basic Differentiation Rules

Power Rule

$$\frac{d}{dx}[x^n] = nx^{n-1} \quad \text{for ALL } n \in \mathbb{R}$$

Examples:

$$\frac{d}{dx}[x^5] = 5x^4 \qquad \frac{d}{dx}[x^{-2}] = -2x^{-3} \qquad \frac{d}{dx}[\sqrt{x}] = \frac{d}{dx}[x^{1/2}] = \frac{1}{2}x^{-1/2}$$

Constant Rule

$$\frac{d}{dx}[c] = 0 \qquad \frac{d}{dx}[cf(x)] = c \cdot f’(x)$$

Sum/Difference Rule

$$\frac{d}{dx}[f \pm g] = f’ \pm g’$$

Product Rule

$$\frac{d}{dx}[f \cdot g] = f’g + fg’$$

Example:

$$\frac{d}{dx}[x^2 \sin x] = 2x \cdot \sin x + x^2 \cdot \cos x$$

Quotient Rule

$$\frac{d}{dx}\left[\frac{f}{g}\right] = \frac{f’g - fg’}{g^2}$$

Memory: “Lo d-Hi MINUS Hi d-Lo, over Lo-Lo” (low × d(high) − high × d(low))

Example:

$$\frac{d}{dx}\left[\frac{x^2}{x+1}\right] = \frac{2x(x+1) - x^2(1)}{(x+1)^2} = \frac{2x^2 + 2x - x^2}{(x+1)^2} = \frac{x^2 + 2x}{(x+1)^2}$$

Chain Rule

$$\frac{d}{dx}[f(g(x))] = f’(g(x)) \cdot g’(x)$$

Memory: “Derivative of outside (keep inside) × Derivative of inside”

Example:

$$\frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot 2x = 2x\cos(x^2)$$

Triple Product Rule

$$\frac{d}{dx}[fgh] = f’gh + fg’h + fgh’$$

Example:

$$\frac{d}{dx}[x^2 \cos x \cdot e^x] = 2x \cos x \cdot e^x + x^2(-\sin x) e^x + x^2 \cos x \cdot e^x$$


Trig Derivatives

The 6 Trig Derivatives
FunctionDerivativeMemory
$\sin x$$\cos x$Sin → Cos (positive)
$\cos x$$-\sin x$Cos → negative Sin
$\tan x$$\sec^2 x$Squared family
$\cot x$$-\csc^2 x$Squared family (CO = negative)
$\sec x$$\sec x \tan x$Multiply family
$\csc x$$-\csc x \cot x$Multiply family (CO = negative)
Pattern Families

Squared Family: tan and cot give squared derivatives $$\frac{d}{dx}[\tan x] = \sec^2 x \qquad \frac{d}{dx}[\cot x] = -\csc^2 x$$

Multiply Family: sec and csc multiply with their buddy $$\frac{d}{dx}[\sec x] = \sec x \tan x \qquad \frac{d}{dx}[\csc x] = -\csc x \cot x$$

CO = NEGATIVE: cot and csc always have negative signs!

With Chain Rule

$$\frac{d}{dx}[\sin(u)] = \cos(u) \cdot u’ \qquad \frac{d}{dx}[\tan(u)] = \sec^2(u) \cdot u’$$

Example:

$$\frac{d}{dx}[\sin(3x)] = \cos(3x) \cdot 3 = 3\cos(3x)$$

$$\frac{d}{dx}[\cos^2(x)] = 2\cos(x) \cdot (-\sin x) = -2\cos(x)\sin(x)$$


3.3 Inverse Functions & Special Derivatives

Exponential

$$\frac{d}{dx}[e^x] = e^x \qquad \frac{d}{dx}[e^u] = e^u \cdot u’$$

Memory: $e^x$ is “immortal” — derivative can’t kill it!

Examples:

$$\frac{d}{dx}[e^{3x}] = e^{3x} \cdot 3 = 3e^{3x}$$

$$\frac{d}{dx}[e^{x^2}] = e^{x^2} \cdot 2x = 2xe^{x^2}$$

Logarithm

$$\frac{d}{dx}[\ln x] = \frac{1}{x} \qquad \frac{d}{dx}[\ln u] = \frac{u’}{u}$$

Memory: ln “flips” — becomes 1/x

Examples:

$$\frac{d}{dx}[\ln(x^2)] = \frac{2x}{x^2} = \frac{2}{x}$$

Shortcut: $\ln(x^2) = 2\ln(x)$ → $\frac{d}{dx} = 2 \cdot \frac{1}{x} = \frac{2}{x}$

$$\frac{d}{dx}[\ln(\sin x)] = \frac{\cos x}{\sin x} = \cot x$$


Implicit Differentiation

When to Use

When you can’t (or don’t want to) solve for $y$ explicitly.

Method
  1. Differentiate both sides with respect to $x$
  2. For any $y$ term, use chain rule: $\frac{d}{dx}[f(y)] = f’(y) \cdot \frac{dy}{dx}$
  3. Collect all $\frac{dy}{dx}$ terms on one side
  4. Solve for $\frac{dy}{dx}$

Example 1: Circle

$$x^2 + y^2 = 25$$

Differentiate: $$2x + 2y\frac{dy}{dx} = 0$$

Solve: $$\frac{dy}{dx} = -\frac{x}{y}$$

Example 2: Product with y

$$x^2 + xy + y^2 = 7$$

Differentiate: $$2x + \left(1 \cdot y + x \cdot \frac{dy}{dx}\right) + 2y\frac{dy}{dx} = 0$$

Note: For $xy$, use product rule! $\frac{d}{dx}[xy] = 1 \cdot y + x \cdot \frac{dy}{dx}$

Solve: $$2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$$ $$\frac{dy}{dx}(x + 2y) = -2x - y$$ $$\frac{dy}{dx} = \frac{-2x - y}{x + 2y}$$

Example 3: Trig

$$\sin(x) + \cos(y) = 1$$

Differentiate: $$\cos(x) + (-\sin(y)) \cdot \frac{dy}{dx} = 0$$

Solve: $$\frac{dy}{dx} = \frac{\cos(x)}{\sin(y)}$$


3.4 Extreme Values

Critical Points

A critical point of $f$ is where:

  • $f’(c) = 0$, OR
  • $f’(c)$ does not exist (but $f(c)$ exists)

Extreme Value Theorem (EVT)

If $f$ is continuous on closed bounded interval $[a, b]$, then $f$ has both an absolute maximum and minimum on $[a, b]$.

Closed Interval Method

To find absolute max/min of $f$ on $[a, b]$:

  1. Find all critical points in $(a, b)$
  2. Evaluate $f$ at critical points AND endpoints $a, b$
  3. Largest value = absolute max, smallest = absolute min

Example

Find absolute max/min of $f(x) = x^3 - 6x^2 + 9x + 2$ on $[-1, 4]$.

Step 1: Find critical points $$f’(x) = 3x^2 - 12x + 9 = 3(x^2 - 4x + 3) = 3(x-1)(x-3)$$ $$f’(x) = 0 \Rightarrow x = 1, 3$$

Step 2: Evaluate at critical points and endpoints

$x$$f(x)$
$-1$$(-1)^3 - 6(-1)^2 + 9(-1) + 2 = -1 - 6 - 9 + 2 = -14$
$1$$1 - 6 + 9 + 2 = 6$
$3$$27 - 54 + 27 + 2 = 2$
$4$$64 - 96 + 36 + 2 = 6$

Step 3: Compare

  • Absolute max: $6$ at $x = 1$ and $x = 4$
  • Absolute min: $-14$ at $x = -1$

Increasing/Decreasing Intervals

$f’(x)$$f(x)$ is…
$f’(x) > 0$Increasing ↗
$f’(x) < 0$Decreasing ↘
$f’(x) = 0$Potential local max/min

First Derivative Test

At critical point $c$:

  • $f’$ changes from + to − → Local maximum
  • $f’$ changes from − to + → Local minimum
  • $f’$ doesn’t change sign → Neither (inflection point)

Concavity (Second Derivative)

$f’’(x)$$f(x)$ is…
$f’’(x) > 0$Concave up ∪
$f’’(x) < 0$Concave down ∩
$f’’(x) = 0$Potential inflection point

Inflection Points

Where concavity changes (f’’ changes sign).


⚠️ Ch3 Common Mistakes

My 11 Errors from Mixed Derivatives Hell!

#ErrorFix
3Read $\tan(x^3)$ as $\tan^3(x)$Read notation TWICE! $\tan(x^3) \neq [\tan(x)]^3$
9Wrote $-\csc(2x)$ instead of $-\csc^2(2x)$$\frac{d}{dx}[\cot u] = -\csc^2(u) \cdot u’$ — SQUARED!
10$u = x^3 + x \to u’ = 3x^2$ (forgot +1)Differentiate EVERY term: $u’ = 3x^2 + 1$
12Used $\tan(x)$ instead of $\sec^2(x)$Product rule: check you’re using $v’$, not $v$
13Quotient rule with + instead of −“Lo d-Hi MINUS Hi d-Lo” — always MINUS!
14$\cos^3(2x)$: got $6\cos^2(2x)$Missing $-\sin(2x)$! Complete ALL chain layers
17Triple product got messySimplify first: $\sin x \cos x \tan x = \sin^2 x$
20Got $(x - 2y)$ instead of $(x + 2y)$Collect terms carefully, check signs!
24Inner deriv: $(3x^2 - x)$ not $(3x^2 - 2)$$\frac{d}{dx}[-2x] = -2$, not $-x$
26Read $\sin(x^2) \cdot \cos(x^2)$ as divisionRead · vs / carefully!
28$\sqrt{\sin x}$: wrote $\frac{1}{2}\sin(x)\cos(x)$Power drops: $[\sin x]^{1/2} \to \frac{1}{2}[\sin x]^{-1/2}$

General Error Prevention Protocol

Before each problem (10 seconds):

  1. ✓ Read the problem TWICE
  2. ✓ Identify which rules needed
  3. ✓ Count chain rule layers

After each problem (5 seconds):

  1. ✓ Did I complete ALL chain rule layers?
  2. ✓ Did I use $v’$ not $v$?
  3. ✓ Are my signs correct?

Quick Reference Card

All Derivatives in One Table

FunctionDerivative
$c$ (constant)$0$
$x^n$$nx^{n-1}$
$e^x$$e^x$
$\ln x$$\frac{1}{x}$
$\sin x$$\cos x$
$\cos x$$-\sin x$
$\tan x$$\sec^2 x$
$\cot x$$-\csc^2 x$
$\sec x$$\sec x \tan x$
$\csc x$$-\csc x \cot x$

Rules

RuleFormula
Product$(fg)’ = f’g + fg'$
Quotient$\left(\frac{f}{g}\right)’ = \frac{f’g - fg’}{g^2}$
Chain$[f(g(x))]’ = f’(g(x)) \cdot g’(x)$
Triple$(fgh)’ = f’gh + fg’h + fgh'$

Trig Identities (Simplify First!)

ExpressionSimplifies To
$\tan x$$\frac{\sin x}{\cos x}$
$\cot x$$\frac{\cos x}{\sin x}$
$\sec x$$\frac{1}{\cos x}$
$\csc x$$\frac{1}{\sin x}$
$\sin x \cos x$$\frac{1}{2}\sin(2x)$
$\sin^2 x + \cos^2 x$$1$

Limit Patterns

FormResult
$\frac{n}{0}$$\pm\infty$
$\frac{0}{n}$$0$
$\frac{0}{0}$Indeterminate — simplify!

  • Created: 2026-02-05
  • Coverage: TCX2101 Ch 1.1 - 3.4
  • Purpose: 宝典 for Class Test 1 and beyond

Source: NUS TCX2101 Calculus and Linear Algebra, prepared during CT1 prep week

GitHub: Session notes

comments powered by Disqus